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ELASTIC SOLUTIONS IN A SEMI-INFINITE SOLID
WITH AN ELLIPSOIDAL INCLUSION

1. INTRODUCTION

The elastic fields due to inclusions in infinite media have been extensively investigated

using Eshelby's method ( 1957, 1959, 1961 ). Cases of more practical interest are the

elastic fields due to inclusion in semi-infinite media since many sites of initial strains,

resulting from high stresses due to contact, heating, or metallurgical transformations, are

confined to a near surface zone. The problem of an ellipsoidal inclusion which has

undergone a simple shear is of interest in connection with twinning and martensitic or other

diffusionless transformations. The elastic solution for an inclusion near the free surface has

been solved for a spherical inclusion with pure dilatational eigenstrain ( stress free

transformation strain ) ( Mindlin and Cheng, 1950B ), an ellipsoidal inclusion with pure

dilatational eigenstrains ( Seo and Mura, 1979 ) and a cuboidal inclusion with uniform

eigenstrains ( Chiu, 1977 ). In both Mindlin and Cheng's, and Seo and Mura's analyses,

the solutions are obtained by integrating the Green's function of a point force in the interior

of a semi-infinite solid ( Mindlin, 1936, 1953 ). In Chiu's analysis, the free surface

condition is satisfied by superimposing the solution of a half-space under normal surface

traction on the full space solution due to a cuboidal inclusion and its image with the uniform

eigenstrains.

.The solution of the linear equations of equilibrium of an elastic body with a force

acting at a point within an isotropic body bounded by a plane has been solved by starting

with Kelvin's solution for a force in an infinite body and guessing the nuclei of strain to

add outside of the semi-infinite body so as to annul the tractions on the plane boundary (

Mindlin, 1936 ). The same results have been obtained directi -" neans of an application

of potential theory ( Mindlin, 1953 ). The stress functions of di' i strain of nuclei in the

semi-infinite elastic solid ( Mindlin and Cheng, 1950A ) are derived, by the processes of

superposition, differentiation and integration, from the solution for the single force in the

interior of the semi-infinite solid.
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The method of Hankel transformations, elaborated for cylindrically symmetrical

problems of the theory of elasticity in Sneddon's book ( 1951 ), has been used to solve the

stress field of a circular edge dislocation loop with Burger's vector normal to the plane of

the loop ( prismatic loop ) in an unbounded solid ( Kroupa, 1960 ) and in the half space (

Bastecka, 1964 ).

In the present study, Eshelby's method for the ellipsoidal inclusion, the Hankel

transformation method for the axisymmetric problems and the Mindlin's stress functions

for strain nuclei of double force with moment are used for the analysis of the elastic

solution of an ellipsoidal inclusion in the half space when a uniform eigenstrain with

T T T T T T
components e33 , e1 1= e22 , e3 1 , e2 3 and e12 = 0 are given initially inside the inclusion.

Existing solutions are shown to be special cases of the present one.

2. ELASTIC SOLUTIONS

T
The present problem is to express the elastic field when the eigenstrain eij in an

ellipsoidal subdomain al (with semi-axes a1 , a2, a3, and center at x, = x2 = 0 and x3 = c)

T T T
of the half space x3 > 0 ( Fig.l ) is made up of components eII=e 1 2 , e33 ,

T T T
e3 1 , e2 3 and e 1 2 = 0. In order that the plane x3 = 0 be a surface free of external tractions,

the stress components on this plane must satisfy the following boundary conditions

( 013)X =0----(a 23)X3== O (33)x,_-0-- 0, l

and both the equations of equilibrium

a ij,j=O,

and the compatibility equations

2 1 0 (3)
S I + v ij
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where the numerical suffixes, i, j = 1, 2, 3, following a comma denote differentiation with
respect to the Cartesian coordinates x,, x2, x3, respectively; a repeated suffix is summed

over values 1, 2, 3, and v is the Poisson's ratio.

Similar to the approaches ofBastecka ( 1964 ) and Chiu (1978), the stress a0i in the half

space x3 >_ 0 outside the axisymmetric ellipsoidal inclusion centered at the point (0,0,c) can

be expressed as

I IU

ij 1 i j i j (4)

which satisfies the required boundary conditions, Eq.(1), the equilibrium condition,

Eq.(2). the compatibility equations, Eq.(3), and also converges to zero for x, and x2

approaching ±co and x3 approaching oc. In Eq.(4), the term iIj is the stress caused by the

inclusion a, centered at (0,0,c) in an isotropic infinite body and can be obtained by using

Eshelby's method (1961) with displacements

-I ejkIijk--- ei k -- e Ti (5)
8ic(1-v) 2nt 4ir(l-v)

I I
where AV and , respectively, are the biharmonic and harmonic potentials of attracting

TT

matter of unit density filling the volume Q and e T= emm with repeat index m sum over 1, 2

H
and 3. aij is the stress caused by the image inclusion 2 centered at the point (0,0,-c) in an

isotropic infinite body, with eigenstrain

(n e= . (6)

II.
The solution for the stresses 0Yi, is obtained by translating the origin of coordinates in

Eq.(4) from points (0,0,c) to (0,0,- c). The additional stress a'ji in Eq.(4) is the fictitious

stress necessary to make the surface of the half-space free of stresses and it satisfies the

boundary conditions

I 3 I
(0.33),=0--- 0 3 3 + 0.3 3 ), 1 0,
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I I + lC f
(a'13 )x2 =O=-( a 13+ a 1 3 )X, , (7)

I II
(C' 2 3 )x s =O=-( (Y2 3 + a 2 3 )X3 =.

The elastic solution of an inclusion in a half-space present in this report are solved first
T T T

by considering the inclusion with pure principal eigenstrains e11 = e22 , e3 3 and then the

T T T
inclusion with pure shear eigenstras e3 1 , e2 3 and e12 = 0 is solved. The final solution is

the linear superposition of these solutions.

T T T(A) Inclusion with with pure principal eigenstrains e I t 
= e22, e3

The stress field of the axisymmetric penny shape inclusion with principal eigenstrains
T.

e33 in an infinite medium obtained by Eshelby method is compared with the stress field of

a prismatic loop with radius a and Burger's vector b in an infinite medium as obtained by

Kroupa ( Yu and Sanday, 1988 ). A relationship is found between the potential function

of the inclusion and the integral function 10, which involves the product of Bessel

functions J for the solution of the prismatic loop. That is

l= I T
10 = -e 3 3 *, (8)

2nrab

where in cylindrical coordinate ( r, 9, z)

Ia = t "J m(rt/ a )J l(t) e - "t/ ' dt ,(9)

and J. is the Bessel function of the mth order. In Eqs. (8) and (9), both the harmonic

potential * and the integral function 101 are taken the origin as the center of the inclusion

and the center of the dislocation loop, respectively.

Then the fictitious stress field is solved first for the two dimensional problem by using

the Hankel transformation method and then it is transformed into the three dimensional

case by use of the relationship between and 1o0. The displacements solved are

4



T T
(e 33-e 1 1 ) 4f 1 3 n V 1+2 133+(-v

['V 13 -v 1+2  W3 +(-V . 13 3
8ir(l-v)

-2Z ,133 -4(2-v)z* 1 -2(2v)

(I+v)e 1 T
I- [6+ 2# 11+ (3-4v)41

4x(1-v) 1 3

T T
(e3 3 - ell) I-
= xl v ["xv233 -2v* 2 + 2Z'V 2333 + 3 4 V23( 0

2Z2-v 
(10)z u-2(-v)

.2 23 3 -4(2-v 23-22 .V)2

I- [ + 2z* 3 + (3-4v) 2 ]
4U(1-v) . 2

T T

(3e33 -ell) I V1 2(2-v)4i1 +(-4Yv 3

- Z 333- .4 +V)Z, 3 3 + 4-v) 3 1

(1+v)e 1 T 
i

-nlv [d),- 323 -,(3-4v)4 ,

and the saw~ses are

i eT _eT

47 1 3-v 1) I W. 1133 + 2V* 22 +2z~I11 3 3 3+ (3-4v)4f 1133 4vWI3333

22 U 11
-2 .11 3 3 -4(2-V)z*. 1 13 +4VZO 3 3 372(2-3v). 1  + 14v .33J

T T

a 2 2  4c -) W [V 2 2 3 3+ 2V*I 1 + 2ZW 2 2 3 3 3 + (3-4v)W1I22 3 3 4vul.3 33 3

2 E[ 11 2i2-3v
2 223 3 -4(2-V)O, 22 3+ 4VZ*.333 -2(- .22 + 14V 3 3

I1vp1 I I ifz (-v

-2x(l-v) 1 22~ 223-*4212 4V *33I
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T T
1(e33- e,,) i I U n

a 3 3 - 4 (-v) ['V, 3 3 3 3 - 40, 3 3 - W, 3 3 3 3 + 40,33

+ l 2 II o
+2z. 3 3 3 3 3 - 2z 0,3 3 3 3 - 8Z 3 33 ]

( T+V) I II i
Re [0I 1 3 3 - 0 3 3 + 2z0 3 3 3 ], (11)

2n(1-v)

i( e 3-e) I I
aF1 2 - 33-1) ['v, 1 2 3 3 -2v0, 12+2z', 12 33 3 +(3-4v)'V. 12 3 34*(1 -v )

2 Iz - 2(2-3v) H
- 2z 0 1233 - 4(2-v) Z, 123 - 121

TaH(1+v)gtceT  I U U(I v eI I [ 1 0 12 +  2Z O 123 + (3 -.4 ) 0 12 1]'

2(l-v)
T T

e33- e) I ii H
(723- 4i1-v) [12333 - 20.23 + 2 ZW,2 3 3 3 3 + W, 2 3 3 3

2UIl II
-2z 0.2333- 87, 2 3 3 - 20.23]

TT1Vj~ I ut I
(2V)e I [0 23.+ 27.233 + ,231]

2 (1-v)
T _T 1

g(e33_et I I I 2W
31"- [(-v) [V, 13 3 3 - 2013+ 2  V.13 3 3 3 + 1,1333

2211 11 HI
2.,1333- 8z*0 33 -20 0131

T
( T+v)pe I 1 1
- (l-v) [0, 1 3 + 2Z*. 1 3 3 + 0, 1 3 19

and the dilatational stress is
T T

(I+v)j( e33 -- e1 1 ) 1+ 11 a
2(-v) [ - ,33+70.33- 211.3333 + 2Z333 1

2 T2(1+v) pte t
+ 21v) 0,33' (12)

where 'V and * are the biharmonic and harmonic potential of attracting matter of unit

density filling the volume L2, respectively.

6



The ad, -onal justification for the substitution of Eq. (8) is that Eshelby ( 1961 ) has

shown that the remote field of a finite prismatic loop with area A and Burgers vector b is

the same as the remote field of an inclusion of arbitrary shape whose volume V and the
T

stress free strain e33 (parallel to b ) satisfy

TVe3 3 = Ab, (13)

For a circular edge dislocation loop of radius a and the x 3-axis (or z-axis) as the axis of

symmetry in an unbounded medium, the stress field is found by Kroupa (1960) by using

Hankel transformations. Since for the remote field the inclusion can be of any shape,

therefore, the harmonic potential for a spherical inclusion of radius a is chosen, Then

Eqs. (8) and (13) give
-i= al

I0=- (a- 0), (14)

which is the same as obtained from the mathematics formula given by Eason, Noble and

Sneddon ( 1955 ). There, the substituting of Eq.(8) is not limited to penny shape inclusion.

it can apply to any ellipsoidal inclusion because we can let the radius of the dislocation loop

approach zero and integrate the solutions over the volume of the inclusion which gives the

results in term of potential functions.

T T T
(B) Inclusion with with pure shear eigenstrains e3 1 , e23 and e1 2 = 0.

The linear elastic solution for an inclusion with pure shear eigenstrain is obtained

indirectly by the application of Kelvin's solution for double force with moment in an

infinite body and Mindlin's solution for double force with moment in an semi-infinite body

A comparison between Kelvin's solution for double force with moment in an infinite

body and Eshelby's solution for an inclusion with pure shear eigenstrain is conducted

7



first. A relation between these two solutions is established first. Then the solution for the

inclusion in the half space can be obtained by substituting this relationship into the solution

obtained by Mindlin for the semi-infinite solid.

For the double force with strength A in the x Ix direction with moment about x2 axis

and the double force with strength A in X 3 direction with moment about y axis in infinite

solid, the Galerkin vector is ( Mindlin, 1936)

F =iAx 3/R +kAxI/R , (15)

2 2 2 2
where R = + + x 3. The displacements derived from Eq. (15) are

Au I = _ 20l-O~P,33 X Y ,I

Au2 = - [X 3(P 2 ], (16)

A
u3 = - [2(-v)p -x 3(p, I3

where q= 1/R.

T T
For penny shape inclusion (disc; a = a2, a 3 -0 with e 3 = e 1 3 are the only non-zero

components of eij. Eq. (1) gives the displacement as

T
u l e13 2( 1-v)*, 3 -X A, 111]

4n(1-v)
T

U2- [ X3*, 1 21, (17)

4iq( I-v)
Te 1 3

U3 = [ 2(1-v)*, 1 -x 3 1, '
4n(1-v)

where is the harmonic potential of attracting matter of unit density filing the inclusion

volume a centered at ( 0,0,0 ) and is

8



Eq. (18) is valid for all shapes of ellipsoidal inclusion not just for penny shape inclusion.

By comparing Eqs. (16) -id (17), it is found that the solution for the inclusion with pure

T T
shear eigenstrain e31 = e1 3 can be obtained by integrating the results of the double forces

with the same strength A in both the x1 and x 3 direction with moment about x2 axis in an

infinite solid for the strain over the volume element of the inclusion provided that

T
A-=- (19)

4n(l-v)

For the double force at point ( 0.0,c ) with strength A in both x and z directions

with moments about y axis in semi infinite solid, the Galerkin vector is ( Mindlin and

Cheng, 1950A)

x 3 - c x3 - 3c 2c2 (x3 + c) 4(1-v)(1-2v) log(R 2 + x 3+ c)1
F -" I - R2 R2

x, xi 8v(l-v)x1  4(1-2v)1(1-v)x 3 - vc)x 2cx 3xI
R,- R + -

R 2 (R 2 + x 3 + c) 3

2c(x 3 + c)x I 4(1-v)x]
+ 3 R 2  (20)

R2
2 2 2 2 2 2 2 2

Where R=(x-c) +x 2 +x 3 andR 2 =(x 1 +c) +x 2 +x 3 . The stress field of these

double forces can be obtained accordingly and by substituting Eq. (18), the dispalcement in
T T

the matrix due to the inclusion with pure shear eigenstrain e 3 1 = e 13 ,and all others equal to

0 is found to be

T
e 3  I I 2 I II

u -= [ 1 3 -2(1-v), 3 - .zMI1 1 3 3 - (3-4V)W. 1 134n(1l-v)

2
+2z 0 1 13 + 4(1-v)zO,1I + 2(1-V)0,3

T E ill uel 3  2
V 123 2-zi, 1 2 3 3 - (3-4v)W, 1 2 3 + 2Z 0, 12 3 + 4(l-v)zO. 1 2 I, (21)

4n(I-v)

9



TH

el lI II I

U3= [ I W133-2(l-v), 1- 2z'V.1333 (3-4v), 133
4ir(l-v)

2II I
+2z 2,133+ 4vzO 13- 2(1-v)O 1 I.

The corresponding stress field is
T

TLel3 I I II II
a- RC 13 1 113- 20,13 - 2ZV, 11133- 4V W1223- 3 ,1~l113

2ix(t-v)

+2z + 4Z 0,111+ 4vz 0,122 213],
T

13 I U II 1l
(72 2 - R[13 1W[,.12 2 3 - 2V0, 13 - 2ZV,.12 2 3 3 - 4V W. 1 1 13 - 3W,.1 22 32x(l-v)

+ 2 0 H II II 1

+ 2z ,1223+ 4z 0,122+ 4vz 0 111+ 2vO,13],

T

T 3  I 1 1 H
Ca33 - [' W. 1 3 3 3 - 20.13- 2ZV,13333 + W,.1333

2x(1-v)
+ II (22)

+2 , * 13 3 3 +4Z@, 13 3 -- 2 13 1,

T

TI3 I i I
(12- [1 W /1123- (I-v) 023- 2ZV11233- (3-4v) W,/.1123

2(1-v)

+2 * 12 3 +4(l-v)zo01 1 2 +(l-V)0, 2 3 1,

SI I II
(72 3 - [ie13 vW1233- (l-v)0* 12 - 'V,123 3- 2 ZV,12333

274( 1-v)

+ 2z 2, 1233
+ 4Z,1 23 +(-V ) 1 2 1

T
Re I U I

a23- 271v W,1133-- (-V)0,122- W,1133- 2Z1, 11333
2 1l-v)

+ 2z 2 123 3
+ 4Z0,1 13 -(1-V)0.22 1

and the dilataonal field is

10



(1+v)Ae 13  (23)

T T

The solution for inclusion with e2 3 = e 32, all others = 0 is found by cyclic permutation of

(1,2,3). Solution Eqs.(11) and (22) can be shown to satisfy the boundary conditions, Eq.

(1), equilibrium, Eq. (2) and compatibility, Eq. (3).

3. DISCUSSION

In the present analysis, the elastic field caused by an ellipsoidal inclusion was

investigated for a semi-infinite solid. An infinite, isotropic elastic space was considered

first with two ellipsoidal domains of the same shape with centers located at ( 0,0,c ) and (

0,0,-c ). The two domains are arranged to be mirror images of each other with initial

eigenstrain equal in magnitude but of opposite sign. The stress field for given initial

eigenstrains in the two domains can be obtained from superposition of stresses of each

single domain in an infinite solid obtained by Eshelby's method. A fictitious stress is

superimposed such that the the plane x 3 = 0 is stress-free. This fictitious stress is obtained

by the method of Hankle's transformations or by integration of the elastic solutions for

nuclei of strain in the semi-infinite solid.

An important aspect that should be pointed out here is that the image field ( the stress

field due to the image inclusion plus the fictitious stress ) which is superposed to the stress

field from the single inclusion in the infinite solid in order to satisfy the free surface free of

stress will change the initial eigenstrain in the inclusion. More specifically, the problem

considered here was that when a initial eigenstrain of the inclusion in an infinite solid is

given instead of a given initial condition in a half-space under consideration. Therefore the

statements given in sections § 2.1 and § 4.1 in Eshelby's paper ( 1961 ) regarding the

11



sum of the original field and the image field are chosen so that the boundary conditions on

the outer surface of the matrix are satisfied should be carefully interpreted. For example,

consider a cavity in an half-space under external load as a special case of the ellipsoidal

inhomogeneity. Then the image stresses not only have to satisfy the boundary condition at

the free surface but also vanish at the inclusion-matrix interface. Consequently, when an

inclusion in the half-space is considered, the image stress should satisfy not only the free

surface boundary conditions, but also the boundary conditions at the inclusion-matrix

interface.

It was also found out by using the relation 1 = a/ 2R when a -*0 ( as given in

Eq.(14) ), we can obtain the elastic solutions of some of the nuclei of strain in the semi-

infinite solid by directely application of Hankers transformation technique and the Kelvin's

solution for a force in an infinite body. Instead as shown by Mindlin and Cheng ( 1950A )

that they are derived, by the processes of superposition, differentiation and integration,

from the solution for the single force in the interior of the semi-infinite solid. The nuclei of

strain solved by present approach are those axisymmetric to the x 3 axis which is normal to

the free surface, such as single force in x3 direction, double force in x 3 direction, center of

dilatation, doublet with axis parallel to x3 axis.

12
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Fig. I - Ellipsoidal inclusion 0,1 with principal half-axes a, , a2 and a3
in a half space and its imnage L12 .
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